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Jamming of three-dimensional prolate granular materials
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We have found that the ability of long thin rods to jam into a solidlike state in response to a local pertur-
bation depends upon both the particle aspect ratio and the container size. The dynamic phase diagram in this
parameter space reveals a broad transition region separating granular stick-slip and solidlike behavior. In this
transition region the pile displays both solid and stick-slip behavior. We measure the force on a small object
pulled through the pile, and find the fluctuation spectra to have power law tails with an exponent characteristic
of the region. The exponent varies from B=-2 in the stick-slip region to S=-1 in the solid region. These
values reflect the different origins—granular rearrangements vs dry friction—of the fluctuations. Finally, the
packing fraction shows only a slight dependence on container size, but depends on aspect ratio in a manner
predicted by mean-field theory and implies an aspect-ratio-independent contact number of {c)=5.25+0.03.
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I. INTRODUCTION

Anyone scooping nails from a bin at the hardware store or
shoveling hay with a pitchfork has noticed the ability of
large-aspect-ratio (a=L/D> 1) granular materials to act as
a solid. This state can exist at low packing fractions, raising
the possibility of lightweight, rigid building materials. Such
materials have practical applications as proppant in oil re-
covery or conducting networks in quantum dot solar cells.
Here we present an experimental investigation into the de-
pendence of this state on particle aspect ratio and container
size.

The jamming of round and low-aspect-ratio (<5) materi-
als has attracted a great deal of recent attention. A canonical
example of granular jamming is flow through hoppers, where
arches at the exit can support the entire pile [1-4]. This
jammed state, while capable of supporting large constant
forces, is not robust when subjected to sharp taps. Indeed, in
one set of experiments [4] a jet of air was sufficient to rein-
troduce flow.

Jamming is also invoked to explain the erratic drag force
on an object moving through a granular medium [5,6]. The
object comes to rest when it encounters a connected network
of particles that is incapable of rearranging; only when the
applied force is large enough to break through this network
does the motion begin again. The particles in this network
are only a small fraction of the total grains in the pile, those
comprising the force chains [7,8] that terminate on the con-
tainer walls.

The situation is remarkably different for high-aspect-ratio
(>10) granular materials [9]. Philipse [10] noted that par-
ticles of aspect ratio larger than 35 emerged as a solid plug
when poured. This plug maintained the shape of the original
container even in face of external disturbances. This jammed
state can therefore be considered both global and robust, the
connected network of particles containing a significant frac-
tion of the pile that are incapable of moving around one
another. How this solidlike state compares with the jammed
state of ordinary granular materials has not yet been ex-
plored.

*Electronic address: svfsps@rit.edu; http:/piggy.rit.edu/franklin/

1539-3755/2006/73(3)/031306(5)/$23.00

031306-1

PACS number(s): 45.70.—n, 05.70.Fh

Recent work has investigated the mean drag force exerted
by ordinary granular materials on an intruder. Zhou et al.
found [11,12], for example, that mean drag scales linearly
with pressure for both mono- and polydisperse materials.
Geng and Behringer [13] studied the force fluctuations ex-
erted by a two-dimensional packing of disks and found that
the power spectra had a power law tail with exponent -2, as
in three-dimensional systems. Hill et al. [14] and Stone er al.
[15,16] have all looked at plates pushed slowly down into
beds of sand, with interesting behaviors as the plate ap-
proaches the bottom of the container and a temporal evolu-
tion in the granular bed with successive plungings. Finally,
Bratberg et al. [17] simulated the quasistatic flow of rigid,
frictional disks pushed upward against gravity through a nar-
row pipe. They observed a transition in the flow when the
intruder speed was large.

II. SETUP AND PACKING FRACTION

In our experiments, the force on a small ball pulled up-
ward through a pile of prolate granular materials is mea-
sured. Particles are cut from acrylic rods of diameter d
=1/8 in. or d=1/16 in. to varying lengths; aspect ratios vary
from 4 to 48. The particles are dropped into cylinders with
diameters ranging from D=1 to 4 in. A dimensionless con-
tainer diameter is formed by dividing by the particle length

(5ED/L); the smallest D is 0.67, the largest 12. At the
bottom of the pile is a small (d=0.25 in.) metal ball con-
nected to string that runs up through the pile. We have con-
firmed that packings formed around the string have the same
packing fraction as those formed in the string’s absence. The
string is wound around the shaft of a motor that turns with
constant angular speed. A force sensor measures the tension
in the string to within 0.5% at kilohertz resolution. For the
range of forces in our experiments, the string and force sen-
sor act in a Hookean manner with spring constant k
=1600 N/m. The motion of the ball can be erratic; when the
resistance of the pile exceeds that applied by the string the
ball will stop moving until the applied force, increasing as
the string is wound, is again large enough to induce motion.

Particles are simply dropped into the cylinder. “Fluffing”
the pile with air, a technique used to prepare ordinary granu-
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lar materials in a low-density state, does not significantly
decrease the packing fraction of rods [18]. The packing frac-
tion is plotted (log-log scale) versus aspect ratio in Fig. 1,
with different symbols indicating different dimensionless
container sizes. The data from different size containers are
reasonably close to one another, except for a few points at

low D. At these values the particles tend to align with the
sidewalls, introducing significant orientational correlation
and higher packing fractions.

To gain some idea of the randomness of the initial pack-
ing we compare the packing fraction with a mean-field
theory, the random contact model (RCM) [10]. The basic
assumption of this model is that contacts between particles
are uncorrelated, a significant difference from the correlated
contacts that result in ordered packing of, for example, disks
or rods. If the contacts are uncorrelated, then the packing can
be thought of as a collection of independent pairs of rods in
contact.

A key finding of Philipse is that the average number of
contacts {c) scales linearly with the particle concentration. To
show this, Philipse begins with the fraction of orientations
made inaccessible to a particle by the existence of another
particle. This is a function of the center-of-mass separation
of the two particles; when two rods are close together, they
must be more nearly aligned to prevent overlapping. Earlier
work on the packing of rods in two dimensions [9] calculated
the functional dependence of the excluded fraction of orien-
tations f,,(7) analytically and found that, while both experi-
ment and simulations contained long-range correlations, the
functional form was universal over several orders of magni-
tude in aspect ratio. The average number of contacts is then
proportional to the product of the excluded fraction of orien-
tations and the local number density:

=3 f FulpPp(P)dF.

The proportionality factor of 1/2 avoids double counting of
contacts.

The mean-field approximation replaces the local density
p(r) with the average pile density p; the remaining integral
over the excluded orientations can then be identified with the
average excluded volume v,,, defined [19] as the volume
denied to particle j by the condition that it not overlap with
particle i. The average contact number then scales linearly
with packing concentrations and the number density of a pile
is

2e)
p=—".
UCX

The excluded volume for cylinders of length L and thick-

ness D is [19]

vey = (W/2)L2d + =

%Lcﬂ + (P18

+3
= L3<7—Ta+ Mcxz + (772/8)a3)
2 4
and, since the particle volume is v,=(7/ 4)d*’L and = PUps
the packing fraction is
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FIG. 1. Log-log plot of packing fraction ¢ as a function of
particle aspect ratio «. Data are grouped by constant dimensionless

container diameter D=D/L. With the exception of a few points at

low D (where significant particle alignment occurs), the data are
well fitted by a mean-field theory with only one free parameter.
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The predicted packing fraction ¢(«) has one single free pa-
rameter, the average contact number {c). We (and others
[18]) noticed that significant orientational order exists when
the cylinder diameter D is less than one particle length L.
This violates the main assumption of the model, and so we
should not expect good agreement in this region. We there-
fore attempt to fit the prediction from Eq. (2) with all data
taken in cylinders where D/L>1. The resulting line is
shown in Fig. 1. For large aspect ratios Eq. (2) reduces to
¢~{c)/ a, a scaling that was noticed previously in two [9]
and three dimensions [10]. The curvature in the data in Fig. 1
shows that this simple limit does not apply; the full expres-
sion of Eq. (2) (solid line) agrees quite well with the data.
From the fit we find {(¢)=5.25+0.03, which agrees (within
reported error) with the data reported by Philipse [10]. The
constant contact number implies a significant screening ef-
fect, since the contact number could in principle scale with
aspect ratio. A similar result for two-dimensional piles was
found in earlier simulations [9].

The good agreement between experiment and a model
that assumes an isotropic distribution of particle angle sup-
ports the claim that particles are initially randomly oriented.
The discrepancy at small container size is understandable, as
the orientational correlation induced by the narrow cylinder
violates the fundamental assumption of the RCM.
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FIG. 2. Force vs time data for a ball dragged through a pile of
rods of aspect ratio 12 (top), 20 (middle), and 40 (bottom), all in a
2 in. tube. The low-aspect-ratio particles show the stick-slip behav-
ior common in ordinary granular materials. The large-aspect-ratio
particles, however, act as a single solid body, with small fluctua-
tions characteristic of dry friction. Intermediate aspect ratios show
both behaviors in a single experiment on both large and small (in-
set) time scales.

III. FORCE SCALING IN DIFFERENT REGIONS

When the particle aspect ratio is low, the pile responds
with local rearrangements and the drag force on an intruding
object has a random-sawtooth appearance [Fig. 2 (top)]. The
force increases linearly, indicating that the ball is at rest,
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before rapidly decreasing, indicating a burst of motion. The
ball is brought to rest and the cycle repeats. Throughout the
experiment, the bulk pile is at rest. While individual particles
near the ball are moving, there is no collective pile motion.
As the aspect ratio is increased, however, the pile exhibits a
qualitative change to solidlike behavior. With the exception
of a few stray particles, all particles are lifted upward, with
no observed relative motion between particles. The resulting
force vs time diagram is shown in Fig. 2 (bottom). Forces are
normalized by the total pile weight, and so Fig. 2 shows that
the force required to move the pile can be many times the
actual pile weight. This is a consequence of force chains
[7,8] that terminate on the container walls. The ball is push-
ing upward on the particles, but the lateral deflections of the
force chains translate this into a force normal to container
walls. This normal force can be quite large, resulting in large
frictional forces between the walls and the pile.

For intermediate aspect ratios, the pile displays character-
istics of both the granular and solid states. Figure 2 (middle)
shows data from one such run. The pile first behaves much
like that of smaller-aspect-ratio particles, although a close
examination of the force [inset in Fig. 2 (middle)] reveals
small plateaus indicating small amounts of solid-body behav-
ior. Then, with the ball in the middle of the pile, the entire
pile jams and all particles above the ball are lifted. Corre-
sponding to the plateaus in the force is the collective motion
of the entire pile. The pile is visually observed to move as a
solid body for a brief period of time. The breakup of the
solid state is brought about by a collapse of the particles
around the ball. As the pile is constantly rubbed against the
sidewall (and, indeed, shows force fluctuations characteristic
of dry friction) the length of time spent in the solid state is
some indication of the pile’s stability.

A Fourier transform of the force vs time data in the granu-
lar and solid regions (Fig. 3) shows that both spectra show
power law tails, albeit with different exponents indicating a
different fluctuation origin. Data from the granular region
decay as P(f)~f~2, consistent with earlier experiments on
granular materials [20,21]. Coupled with the visual observa-
tion of no macroscopic pile motion, this supports connecting
the force serrations with local particle rearrangements. The
forces in the solid region, however, decay as P(f) ~ f~'. This
is consistent with experimental work on dry friction [22],
and so we infer that the pile is not moving steadily upward,
but in fact sticking on the sidewalls.

The exponent of the spectrum tail is a reliable indicator of
the pile’s behavior. Shown in Fig. 4 is the exponent magni-

tude |B| as a function of normalized tube diameter D. The
data are grouped in three sets corresponding to the three
different behaviors: stick-slip (O), transition (<), and solid-
like (OJ). Lying off the graph’s scale are three additional
stick-slip data points (each representing an average of several

runs) at 5:5, 8, and 12; all are characterized by an exponent
of magnitude of just under 2 with relatively small uncertain-
ties. Data exhibiting transitional behavior show much larger
uncertainties, indicating the statistically fluctuating nature of
the behavior. While all force spectra from these experiments
show the plateaus characteristic of the transition region, the
relative amount of time spent on a plateau (as opposed to
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FIG. 3. Power spectra for force fluctuations from piles exhibit-
ing granular (O) and solid (X) behavior. Both show power law
tails, with the different exponents indicating a different mechanism
for the fluctuations. The 1/f and and 1/f2 decays are consistent
with previous work on, respectively, dry friction and localized
granular rearrangements. Both data sets taken in a D=2 in. diam-
eter tube.

stick-slip) varies wildly from run to run. Data in the solid
region have exponents close to 1 with small uncertainties

(with the exception of data at D=1.2, which we suspect was
very close to the transition region).

IV. DYNAMIC PHASE DIAGRAM

To better understand the transition from granular to solid-
like motion, we have mapped out the dynamic phase diagram
of the behavior as a function of the two control parameters—
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FIG. 4. Exponents of the spectra tails for experimental runs of
varying aspect ratios plotted vs normalized container diameter D
=D/L. Filled symbols are for aspect ratios larger than 20, which
display solidlike motion in containers less than 1.5 particle lengths
across.

PHYSICAL REVIEW E 73, 031306 (2006)

L5 P " T " T " T —i
B Solid
& Transition
O Stick-slip - |
|
1 &  $ | | &
~ |
2 i | @ @ & &
& o © u e
051 @@ o o i .
O o &
G ]
0 8 L . I . L . ] .
0 10 20 30 40 50

Aspect Ratio o

FIG. 5. Phases exhibited by granular piles as a function of two
control parameters—the aspect ratio a and the inverse container
diameter =D, Smaller-aspect-ratio particles show the stick-slip
behavior of granular materials, while larger-aspect-ratio particles
act as a solid body when the container is small enough.

aspect ratio a and container diameter D. It is in fact more

revealing to use the inverse container diameter 1/ D. This is
because when the particle length is increased but tube diam-
eter held fixed both the aspect ratio and inverse diameter
(6=L/D) increase linearly, and so a sequence of experi-
ments in which particle length is increased shows up as
straight lines in &-« space. This is shown in Fig. 5.

As one would expect, when the aspect ratio is very small,
the pile behaves in a canonically granular manner. Neverthe-
less, the signature characteristics of the transition region—
plateaus in the force data and a visual observation of collec-
tive motion—are seen in particles with aspect ratios as low
as 8 when confined to cylinders whose diameter is twice the
particle length. As the container diameter is further reduced,
and the ability of particles to move around one another fur-
ther constrained, we expect solid-body motion to occur even
for the small aspect ratios (upper left corner of the phase
diagram), but we did not explore this region.

We did not investigate the dependence of the transition
region on pulling speed. There are two different mechanisms
through which the pulling speed can become significant:
elastic unloading (particularly significant in a stiff machine)
and particle rearrangements. We show here that we are well
below the critical velocities at which either of these become
important. In a theoretical investigation of frictional disks
pushed upward through a vertical pipe, Bratberg er al. [17]
found a transition that depended on the relative value of two
time scales, #,=(m/k)"> (m is the pile weight and k the
spring constant of the pulling mechanism) corresponding to
the elastic unloading and #,=v/g, the time for a particle to
accelerate due to gravity to velocity v. An order-of-
magnitude estimation of these values for our system is m
~ 1 kg, v=0.01 m/s, and k=1600 N/m, and therefore
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Using these numbers, we would expect a significant influ-
ence of pushing velocity to occur at a characteristic velocity
of about v,=/(m/k)g=24 cm/s, 20 times our actual pulling
speed. Therefore, our pulling “spring” is soft enough and our
velocities slow enough, so that the drop in force is not sig-
nificant.

If the particle rearrangements are governed solely by
gravitational forces, then the ratio of the time it takes a par-
ticle to fall under gravity a distance equal to its length Lz,
=vL/g to the time it takes the intruder to move that distance
t;=L/v is important. The ratio of these times, using our ap-
proximate parameters, is then

leading to a critical velocity of v,.= @g—L%SO cm/s, about 50
times faster than the current pulling speed. Thus, the intruder
moves a negligible distance while the grains themselves are
reorienting. The above analyses imply that we are in the
quasistatic region of behavior and will not see significant
changes in the behavior unless the pulling speed is increased
by at least an order of magnitude.

Philipse observed that particles with aspect ratios larger
than 35 did not flow when poured from a bucket, but rather
emerged as a single, solid plug. The explanation given was a
geometric entanglement of the rods. Interestingly, however,
we do not observe the solid behavior in particles with an
aspect ratio of 48 when poured into the large cylinder. It may
be that, in response to the localized disturbance of a small
intruder, the pile can make small rearrangements necessary
to allow the intruder to pass through while still maintaining
an overall rigid structure. An important next step in this work
will be to investigate the effect of intruder size on phase
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behavior. For small intruders, we imagine we are probing
details of the spaces (voids) in the pile while larger intruders
probe the pile’s rigidity. This would imply a critical length
scale related to particle length and width, consistent with our
observation that the particle aspect ratio alone does not com-
pletely determine the pile’s behavior.

V. CONCLUSIONS

We have observed three qualitatively different types of
behavior in large-aspect-ratio granular materials in response
to a local disturbance: canonically granular stick-slip, solid-
body-like motion, and a transition region that is a combina-
tion of the two. The phase space of this behavior has been
mapped out as a function of two control parameters, the par-
ticle aspect ratio and container diameter. We have found that
even low-aspect-ratio particles can exhibit temporary solid-
body motion that is characteristic of transitional behavior.
Surprisingly, the larger-aspect-ratio particles do not behave
as solid bodies when the container is large enough. The
granular and solid states both show force fluctuations with
spectra that have power law tails, although the exponents are
characteristically different.

We have also investigated the packing fraction as a func-
tion of these two control parameters. While there is a slight
dependence on container size, we find a distinct dependence
on aspect ratio that agrees quite well with the mean-field
random contact model. This is perhaps surprising, as we ob-
serve some orientational ordering that violates a main as-
sumption of this model.
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